# Project Materials

## Monotone Operators and Applications

Preliminaries 7
1.1 Geometry of . . . . . . . . . . . . . . . . . . . 7
1.1.1 Uniformly . . . . . . . . . . . . . . . . 7
1.1.2 Strictly . . . . . . . . . . . . . . . . . . 9
1.1.3 Duality Mappings. . . . . . . . . . . . . . . . . . . . 10
1.1.4 Duality maps of Lp (p > 1) . . . . . . . . . . . 13
1.2 Functions and Sub-differentials . . . . . . . . . . . . . 15
1.2.1 Basic notions of Analysis . . . . . . . . . . . . 15
1.2.2 Sub-differential of a function . . . . . . . . . . 19
1.2.3 Jordan Von Neumann Theorem for the Existence of Saddle point . . . 20
2 Monotone operators. Maximal monotone operators. 23
2.1 Maximal monotone operators . . . . . . . . . . . . . . . . . . 23
2.1.1 Definitions, Examples and properties of Monotone Operators . . 23
2.1.2 Rockafellar's Characterization of Maximal Monotone Operators . . . 27
2.1.3 Topological Conditions for Maximal Monotone Operators . . . 35
2.2 The sum of two maximal monotone operators . . . . . . . . . 37
2.2.1 Resolvent and Yosida Approximations of Maximal Monotone Operators . 37
2.2.2 Basic ties of Yosida Approximations . . . . . . 38
3 On the Characterization of Maximal Monotone Operators 46
3.1 Rockafellar's characterization of maximal monotone operators. 46
4 Applications 51
4.1 Laplacian . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
4.2 Uniformly Monotone Operators . . . . . . . . . . . . . . . . . 52

Do You Have New or Fresh Topic? Send Us Your Topic

CHAPTER ONE

Preliminaries

The aim of this chapter is to provide some results pertaining to geometric properties of normed linear spaces and convex functions.

Some of these results, which can be easily found in textbooks are given without proofs or with a sketch of proof only.

1.1 Geometry of

Throughout this chapter X denotes a real norm space and X denotes its corresponding dual. We shall denote by the pairing hx; xi the value of the function x 2 X at x 2 X. The norm in X is denoted by k k, while the norm in X is denoted by k k. If there is no danger of confusion we omit the asterisk from the notation kk and denote both
norm in X and X by the symbol k k.

As usual We shall use the symbol ! and * to indicate strong and weak convergence in X and X respectively. We shall also use w-lim to indicate the weak-star convergence in X. The space X endowed with the weak-star topology is denoted by Xw

1.1.1 Uniformly

Definition 1.1. Let X be a normed linear space. Then X is said to be uniformly convex if for any ” 2 (0; 2] there exist a = (“) > 0 such that for each x; y 2 X with kxk 1, kyk 1, and kx 􀀀 yk “, we have k1

Monotone Operators and Applications – Premium Researchers

## Not What You Were Looking For? Send Us Your Topic

TRUCTIONS AFTER

After making payment, kindly send the following: