Project Materials

GENERAL

Isoperimetric Variational Techniques and Applications



Do You Have New or Fresh Topic? Send Us Your Topic


Isoperimetric Variational Techniques and Applications

 

TABLE OF CONTENTS

Epigraph 2
0 Introduction and Motivations 8
1 Preliminaries:
Notations, Elementary notions and Important facts. 1
1.1 Banach Spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Hilbert Spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.3 Differential Calculus in Banach spaces . . . . . . . . . . . . . . 6
1.4 Sobolev spaces and Embedding Theorems . . . . . . . . . . . 9
1.5 Basic notions of Convex analysis . . . . . . . . . . . . . . . . . 13
2 Minimization and Variational methods 18
3 Existence Results of Periodic Solutions of some Dynamical Systems.
28
Bibliography 49

CHAPTER ONE

Preliminaries:

Notations, Elementary notions and Important facts.

1.1 Banach Spaces

Definition 1.1.1 Let X be a real linear space, and k:kX a norm on X and dX the corresponding metric dened by dX(x; y) = kx 􀀀 ykX 8x; y 2 X: The normed linear space (X; k:kX) is a real Banach space if the metric space (X; dX) is complete, i.e., if any Cauchy sequence of elements of space (X; k:kX) converges in (X; k:kX). That is, every sequence satisfying the following Cauchy criterion:

8″ > 0; 9n0 2 N : p; q n0 ) dX(xp; xq) ” converges in X:

Definition 1.1.2 Given any vector space V over a eld F ( where F = R or C), the topological dual space (or simply) dual space of V is the linear space of all bounded linear functionals. We shall denote it by V :
V := f’ : ‘ : V 􀀀! F; ‘ linear and bounded g

Remark 1.1.1
1)The topological dual space of V is sometimes denoted V 0:
2 Banach Spaces
2)The dual space V has a canonical norm dened by
kfkV = sup
x2V;kxk6=0
jf(x)j
kxk
; 8f 2 V :
3)The dual of every real normed linear space, endowed with its canonical norm is a Banach space.
In order to dene other useful topologies on dual spaces, we recall the following

Definition 1.1.3 (Initial topology)

Let X be a nonempty set, fYigi2I a family of topological spaces (where I is an arbitrary index set) and i : X 􀀀! Y ; i 2 I; a family of maps.

The smallest topology on X such that the maps i; i 2 I are continuous is called the initial topology.

Next, we dene the weak topology of a normed vector space X and the weak star topology of its dual space X which are special initial topologies.

Definition 1.1.4 (weak topology)
Let X be a real normed linear space, and let us associate to each f 2 X the map f : X 􀀀! R given by f (x) = f(x) 8x 2 X:

The weak topology on X is the smallest topology on X for which all the f are continuous.

We write ! 􀀀 topology for the weak topology.

Definition 1.1.5 (weak star topology)

Let X be a real normed linear space and X its dual. Let us associate to each
x 2 X the map
x : X 􀀀! R
given by
x(f) = f(x) 8f 2 X:
The weak star topology on X is the smallest topology on X for which all the
x are continuous.
We write ! 􀀀 topology for the weak star topology.

3 Banach Spaces

Proposition 1.1.6 Let X be a real normed linear space and X its dual space.

Then, there exists on X three standard topologies, the strong topology given by the canonical norm k:kX on X; the weak topology (! 􀀀topology) and the weak star topology ! 􀀀 topology such that :
(X; !) ,! (X; !) ,! (X; k:kX ) :

The following part of this section is devoted to revive spaces.

For any normed real linear space X; the space X of all bounded linear functionals on X is a real Banach space and as a linear space, it has its own corresponding dual space which we denote by (X) or simply by X and often refer to as the the second conjugate of X or double dual or the bi-dual of X:

There exists a natural mapping J : X 􀀀! X dened , for each x 2 X by
J(x) = x
where
x : X 􀀀! R
is given by
x(f) = f(x)
for each f 2 X:
Thus
hJ(x); fi f(x) for each f 2 X:
J is linear and kJxk = kxk for all x 2 X; (i.e.) J is an isometry embedding .
In general, the map J needs not to be onto. Since an isometry is injective, we always identify X to a subspace of X:

The mapping J is called canonical embedding. This leads to the following definition.

Definition 1.1.7 Let X be a real Banach space and let J be the canonical embedding of X into X: If J is onto, then X is said to be reexive. Thus, a reexive real Banach space is one for which the canonical embedding is onto.

We now state the following important theorem.
Theorem 1.1.8 (Eberlein-Smul’yan theorem)
A real Banach space X is reexive if and only if every ( norm ) bounded sequence
in X has a subsequence which converges weakly to an element of X:
3
4 Hilbert spaces
1.2 Hilbert Spaces
Definition 1.2.1
A map : E E 􀀀! C is sesqui linear if:
1) (x + y; z + w) = (x; z) + (x;w) + (y; z) + (y;w)
2) (ax; by) = ab(x; y) where the bar indicates the complex conjugation
for all x; y; z;w 2 E and all a; b 2 C:
A Hermitian form is a sesqui linear form : E E 􀀀! C such that
3) (x; y) = (y; x) ;
A positive Hermitian form is a Hermitian form such that
4) (x; x) 0 for all x 2 E ;
A definite Hermitian form is a Hermitian form such that
5) (x; x) = 0 =) x = 0 :

An inner product on E is a positive definite Hermitian form and will be denoted h: ; :i := (: ; :). The pair (E; h: ; :i) is called an inner product space.

We shall simply write E for the inner product space (E; h: ; : i) when the inner product h: ; : i is known.
In the case where we are using more than one inner product spaces, specification
will be made by writing h: ; :iE when talking about the inner product space
(E; h: ; :i):
Definition 1.2.2 Two vectors x and y in an inner product space E are said to
be orthogonal and we write x ? y if hx; yi = 0: For a subset F of E; then we
write x ? F if x ? y for every y 2 F:
Proposition 1.2.3 Let E be an inner product space and x; y 2 E:
Then
jhx; yij2 hx; xi:hy; yi :
4
5 Hilbert spaces
For an inner product space (E; h: ; :i); the function k:kE : E 􀀀! R dened by
kxkE =
p
hx; xiE
is a norm on E.
Thus, (E; k:kE) is a normed vector space, hence a metric space endowed with the distance dE : E E 􀀀! R dened by dE(x; y) = kx 􀀀 ykE :
Definition 1.2.4 (Hilbert Space)
An inner product space (E; h: ; :i) is called a Hilbert space if the metric space (E; dE) is complete.
Remark 1.2.1

1)Hilbert spaces are thus a special class of Banach spaces.

2)Every nite dimension inner product space is complete and simply called
Euclidian Space.
Proposition 1.2.5
Let H be a Hilbert space. Then, for all u 2 H; Tu(v) := hu; vi denes a bounded linear functional, i.e. Tu 2 H. Furthermore kukH = kTukH:

Theorem 1.2.6 (Riesz Representation theorem)

Let H be a Hilbert space and let f be a bounded linear functional on H: Then,

(i) There exists a unique vector y0 2 H such that f(x) = hx; y0i for each x 2 H;

(ii) Moreover, kfk = ky0k:

Remark 1.2.2 The map T : H 􀀀! H dened by T(u) = Tu is linear,(antilinear in the complex case) and isometric. Therefore the canonical embedding is an isometry showing that any Hilbert space is reexive .

At the end of this part, we state this important proposition which is just a corollary of Eberlein-Smul’yan theorem.

Proposition 1.2.7 Let H be a Hilbert space, then any bounded sequence in H has a subsequence which converges weakly to an element of H:

 

Do You Have New or Fresh Topic? Send Us Your Topic 

 

 

Isoperimetric Variational Techniques and Applications


Not What You Were Looking For? Send Us Your Topic



INSTRUCTIONS AFTER PAYMENT

After making payment, kindly send the following:
  • 1.Your Full name
  • 2. Your Active Email Address
  • 3. Your Phone Number
  • 4. Amount Paid
  • 5. Project Topic
  • 6. Location you made payment from

» Send the above details to our email; [email protected] or to our support phone number; (+234) 0813 2546 417 . As soon as details are sent and payment is confirmed, your project will be delivered to you within minutes.

Leave a Reply

Your email address will not be published. Required fields are marked *

This site uses Akismet to reduce spam. Learn how your comment data is processed.

Advertisements